Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1871): 20220030, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36633274

RESUMEN

Much recent interest has focused on developing proteins for human use, such as in medicine. However, natural proteins are made up of only a limited number of canonical amino acids with limited functionalities, and this makes the discovery of variants with some functions difficult. The ability to recombinantly express proteins containing non-canonical amino acids (ncAAs) with properties selected to impart the protein with desired properties is expected to dramatically improve the discovery of proteins with different functions. Perhaps the most straightforward approach to such an expansion of the genetic code is through expansion of the genetic alphabet, so that new codon/anticodon pairs can be created to assign to ncAAs. In this review, I briefly summarize more than 20 years of effort leading ultimately to the discovery of synthetic nucleotides that pair to form an unnatural base pair, which when incorporated into DNA, is stably maintained, transcribed and used to translate proteins in Escherichia coli. In addition to discussing wide ranging conceptual implications, I also describe ongoing efforts at the pharmaceutical company Sanofi to employ the resulting 'semi-synthetic organisms' or SSOs, for the production of next-generation protein therapeutics. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.


Asunto(s)
ADN , Código Genético , Humanos , ADN/química , Nucleótidos/química , Emparejamiento Base , Aminoácidos/genética
2.
J Mol Biol ; 434(8): 167331, 2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-34710400

RESUMEN

With few exceptions, natural proteins are built from only 20 canonical (proteogenic) amino acids which limits the functionality and accordingly the properties they can possess. Genetic code expansion, i.e. the creation of codons and the machinery needed to assign them to non-canonical amino acids (ncAAs), promises to enable the discovery of proteins with novel properties that are otherwise difficult or impossible to obtain. One approach to expanding the genetic code is to expand the genetic alphabet via the development of unnatural nucleotides that pair to form an unnatural base pair (UBP). Semi-synthetic organisms (SSOs), i.e. organisms that stably maintain the UBP, transcribe its component nucleotides into RNA, and use it to translate proteins, would have available to them new codons and the anticodons needed to assign them to ncAAs. This review summarizes the development of a family of UBPs, their use to create SSOs, and the optimization and application of the SSOs to produce candidate therapeutic proteins with improved properties that are now undergoing evaluation in clinical trials.


Asunto(s)
Aminoácidos , Emparejamiento Base , Código Genético , Aminoácidos/genética , Emparejamiento Base/genética , Codón/genética , Nucleótidos/genética , Biología Sintética
3.
Nat Chem Biol ; 17(8): 906-914, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34140682

RESUMEN

The development of unnatural base pairs (UBPs) has greatly increased the information storage capacity of DNA, allowing for transcription of unnatural RNA by the heterologously expressed T7 RNA polymerase (RNAP) in Escherichia coli. However, little is known about how UBPs are transcribed by cellular RNA polymerases. Here, we investigated how synthetic unnatural nucleotides, NaM and TPT3, are recognized by eukaryotic RNA polymerase II (Pol II) and found that Pol II is able to selectively recognize UBPs with high fidelity when dTPT3 is in the template strand and rNaMTP acts as the nucleotide substrate. Our structural analysis and molecular dynamics simulation provide structural insights into transcriptional processing of UBPs in a stepwise manner. Intriguingly, we identified a novel 3'-RNA binding site after rNaM addition, termed the swing state. These results may pave the way for future studies in the design of transcription and translation strategies in higher organisms with expanded genetic codes.


Asunto(s)
Eucariontes/enzimología , ARN Polimerasa II/genética , Transcripción Genética/genética , Emparejamiento Base , Simulación de Dinámica Molecular , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo
4.
J Am Chem Soc ; 143(23): 8603-8607, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34096294

RESUMEN

We have developed semisynthetic organisms (SSOs) that by virtue of a family of synthetic, unnatural base pairs (UBPs), store and retrieve increased information. To date, transcription in the SSOs has relied on heterologous expression of the RNA polymerase from T7 bacteriophage; here, we explore placing transcription under the control of the endogenous host multisubunit RNA polymerase. The results demonstrate that the E. coli RNA polymerase is able to transcribe DNA containing a UBP and that with the most optimal UBP identified to date it should be possible to select for increased uptake of unnatural triphosphates. These advances should facilitate the creation of next generation SSOs.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , ADN/genética , Biología Sintética , Emparejamiento Base , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/enzimología
5.
J Am Chem Soc ; 143(13): 4859-4878, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33756076

RESUMEN

Virtually all natural proteins are built from only 20 amino acids, and while this makes possible all the functions they perform, the ability to encode other amino acids selected for specific purposes promises to enable the discovery and production of proteins with novel functions, including therapeutic proteins with more optimal drug-like properties. The field of genetic code expansion (GCE) has for years enabled the production of such proteins for academic purposes and is now transitioning to commercialization for the production of more optimal protein therapeutics. Focusing on E. coli, we review the history and current state of the field. We also provide a review of the first generation commercialization efforts, the lessons learned, and how those lessons are guiding new efforts. With continued academic and industrial progress, GCE methodologies promise to make possible the routine optimization of proteins for therapeutic use in a way that has only previously been possible with small-molecule therapeutics.


Asunto(s)
Código Genético , Codón , Escherichia coli/genética , Genes Bacterianos
6.
J Am Chem Soc ; 142(45): 19029-19032, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33118814

RESUMEN

Through the development of unnatural base pairs that are compatible with native DNA and RNA polymerases and the ribosome, we have expanded the genetic alphabet and enabled in vitro and in vivo production of proteins containing noncanonical amino acids. However, the absence of assays to characterize transcription has prevented the deconvolution of the contributions of transcription and translation to the reduced performance of some unnatural codons. Here we show that RNA containing the unnatural nucleotides is efficiently reverse transcribed into cDNA, and we develop an assay to measure the combined fidelity of transcription and reverse transcription. With this assay, we examine the performance of a wide variety of unnatural codons, both in vitro and in the in vivo environment of a semisynthetic organism. We find that transcription is generally efficient, decoding at the ribosome is generally more challenging, and, correspondingly, sequence-dependent translation efficiency is the origin of variable codon performance.


Asunto(s)
ARN/metabolismo , Transcripción Reversa , Emparejamiento Base , ADN Complementario/biosíntesis , ARN Polimerasas Dirigidas por ADN/metabolismo , Código Genético , Ribosomas/metabolismo
7.
J Nat Prod ; 83(7): 2112-2121, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32614583

RESUMEN

The arylomycins are a class of natural product antibiotics that inhibit bacterial type I signal peptidase and are under development as therapeutics. Four classes of arylomycins are known, arylomycins A-D. Previously, we reported the synthesis and analysis of representatives of the A, B, and C classes and showed that their spectrum of activity has the potential to be much broader than originally assumed. Along with a comparison of the mechanism of acquired and innate resistance, this led us to suggest that the arylomycins are latent antibiotics, antibiotics that once possessed broad-spectrum activity, but which upon examination today, have only narrow spectrum activity due to prior selection for resistance in the course of the competition with other microorganisms that drove their evolution in the first place. Interestingly, actinocarbasin, the only identified member of the arylomycin D class, has been reported to have activity against MRSA. To confirm and understand this activity, several actinocarbasin derivatives were synthesized. We demonstrate that the previously reported structure of actinocarbasin is incorrect, identify what is likely the correct scaffold, confirm that scaffold has activity against MRSA, and determine the origin of this activity.


Asunto(s)
Antibacterianos/análisis , Antibacterianos/química , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Análisis Espectral/métodos , Relación Estructura-Actividad
8.
Nat Chem Biol ; 16(5): 570-576, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32251411

RESUMEN

Natural organisms use a four-letter genetic alphabet that makes available 64 triplet codons, of which 61 are sense codons used to encode proteins with the 20 canonical amino acids. We have shown that the unnatural nucleotides dNaM and dTPT3 can pair to form an unnatural base pair (UBP) and allow for the creation of semisynthetic organisms (SSOs) with additional sense codons. Here, we report a systematic analysis of the unnatural codons. We identify nine unnatural codons that can produce unnatural protein with nearly complete incorporation of an encoded noncanonical amino acid (ncAA). We also show that at least three of the codons are orthogonal and can be simultaneously decoded in the SSO, affording the first 67-codon organism. The ability to incorporate multiple, different ncAAs site specifically into a protein should now allow the development of proteins with novel activities, and possibly even SSOs with new forms and functions.


Asunto(s)
Emparejamiento Base , Codón , Ingeniería Genética/métodos , Nucleótidos/química , Aminoácidos , Anticodón , Escherichia coli/genética , Proteínas Fluorescentes Verdes/genética , Microorganismos Modificados Genéticamente , Nucleótidos/genética , Proteínas Recombinantes/genética
9.
J Am Chem Soc ; 142(5): 2125-2128, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31961667

RESUMEN

Previously, we evolved a DNA polymerase, SFM4-3, for the recognition of substrates modified at their 2' positions with a fluoro, O-methyl, or azido substituent. Here we use SFM4-3 to synthesize 2'-azido-modified DNA; we then use the azido group to attach different, large hydrophobic groups via click chemistry. We show that SFM4-3 recognizes the modified templates under standard conditions, producing natural DNA and thereby allowing amplification. To demonstrate the utility of this remarkable property, we use SFM4-3 to select aptamers with large hydrophobic 2' substituents that bind human neutrophil elastase or the blood coagulation protein factor IXa. The results indicate that SFM4-3 should facilitate the discovery of aptamers that adopt novel and perhaps more protein-like folds with hydrophobic cores that in turn allow them to access novel activities.


Asunto(s)
Aptámeros de Nucleótidos/química , ADN/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas
10.
J Am Chem Soc ; 142(5): 2110-2114, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31985216

RESUMEN

Unnatural base pairs (UBPs) have been developed and used for a variety of in vitro applications as well as for the engineering of semisynthetic organisms (SSOs) that store and retrieve increased information. However, these applications are limited by the availability of methods to rapidly and accurately determine the sequence of unnatural DNA. Here we report the development and application of the MspA nanopore to sequence DNA containing the dTPT3-dNaM UBP. Analysis of two sequence contexts reveals that DNA containing the UBP is replicated with an efficiency and fidelity similar to that of natural DNA and sufficient for use as the basis of an SSO that produces proteins with noncanonical amino acids.


Asunto(s)
Emparejamiento Base , Código Genético , Nanoporos , Interacciones Hidrofóbicas e Hidrofílicas
11.
J Am Chem Soc ; 141(51): 20166-20170, 2019 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-31841336

RESUMEN

We have created a bacterial semisynthetic organism (SSO) that retains an unnatural base pair (UBP) in its DNA, transcribes it into mRNA and tRNA with cognate unnatural codons and anticodons, and after the tRNA is charged with a noncanonical amino acid synthesizes proteins containing the noncanonical amino acid. Here, we report the first progress toward the creation of eukaryotic SSOs. After demonstrating proof-of-concept with human HEK293 cells, we show that a variety of different unnatural codon-anticodon pairs can efficiently mediate the synthesis of unnatural proteins in CHO cells. Interestingly, we find that there are both similarities and significant differences between how the prokaryotic and eukaryotic ribosomes recognize the UBP, with the eukaryotic ribosome appearing more tolerant. The results represent the first progress toward eukaryotic SSOs and, in fact, suggest that such SSOs might be able to retain more unnatural information than their bacterial counterparts.


Asunto(s)
Aminoácidos/genética , ADN Bacteriano/genética , Escherichia coli/genética , ARN Mensajero/genética , ARN de Transferencia/genética , Animales , Emparejamiento Base , Células CHO , Cricetulus , Código Genético , Células HEK293 , Humanos , Estructura Molecular
12.
J Am Chem Soc ; 141(27): 10644-10653, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31241334

RESUMEN

Previously, we reported the creation of a semi-synthetic organism (SSO) that stores and retrieves increased information by virtue of stably maintaining an unnatural base pair (UBP) in its DNA, transcribing the corresponding unnatural nucleotides into the codons and anticodons of mRNAs and tRNAs, and then using them to produce proteins containing noncanonical amino acids (ncAAs). Here we report a systematic extension of the effort to optimize the SSO by exploring a variety of deoxy- and ribonucleotide analogues. Importantly, this includes the first in vivo structure-activity relationship (SAR) analysis of unnatural ribonucleoside triphosphates. Similarities and differences between how DNA and RNA polymerases recognize the unnatural nucleotides were observed, and remarkably, we found that a wide variety of unnatural ribonucleotides can be efficiently transcribed into RNA and then productively and selectively paired at the ribosome to mediate the synthesis of proteins with ncAAs. The results extend previous studies, demonstrating that nucleotides bearing no significant structural or functional homology to the natural nucleotides can be efficiently and selectively paired during replication, to include each step of the entire process of information storage and retrieval. From a practical perspective, the results identify the most optimal UBP for replication and transcription, as well as the most optimal unnatural ribonucleoside triphosphates for transcription and translation. The optimized SSO is now, for the first time, able to efficiently produce proteins containing multiple, proximal ncAAs.


Asunto(s)
Nucleótidos/genética , Biosíntesis de Proteínas , Biología Sintética/métodos , Transcripción Genética , Emparejamiento Base , Desoxirribonucleótidos/química , Desoxirribonucleótidos/genética , Código Genético , Nucleótidos/química
13.
Biochemistry ; 58(27): 2987-2995, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31243995

RESUMEN

For years, antibodies (Abs) have been used as a paradigm for understanding how protein structure contributes to molecular recognition. However, with the ability to evolve Abs that recognize specific chromophores, they also have great potential as models for how protein dynamics contribute to molecular recognition. We previously raised murine Abs to different chromophores and, with the use of three-pulse photon echo peak shift spectroscopy, demonstrated that the immune system is capable of producing Abs with widely varying flexibility. We now report the characterization of the complexes formed between two Abs, 5D11 and 10A6, and the chromophoric ligand that they were evolved to recognize, 8-methoxypyrene-1,3,6-trisulfonic acid (MPTS). The sequences of the Ab genes indicate that they evolved from a common precursor. We also used a variety of spectroscopic methods to probe the photophysics and dynamics of the Ab-MPTS complexes and found that they are similar to each other but distinct from previously characterized anti-MPTS Abs. Structural studies revealed that this difference likely results from a unique mode of binding in which MPTS is sandwiched between the side chain of PheH98, which interacts with the chromophore via T-stacking, and the side chain of TrpL91, which interacts with the chromophore via parallel stacking. The T-stacking interaction appears to mediate relaxation on the picosecond time scale, while the parallel stacking appears to mediate relaxation on an ultrafast, femtosecond time scale, which dominates the response. The anti-MPTS Abs thus not only demonstrate the simultaneous use of the two limiting modes of stacking for molecular recognition, but also provide a unique opportunity to characterize how dynamics might contribute to molecular recognition. Both types of stacking are common in proteins and protein complexes where they may similarly contribute to dynamics and molecular recognition.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Sitios de Unión de Anticuerpos , Pirenos/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Formación de Anticuerpos , Cristalografía por Rayos X , Ratones , Modelos Moleculares
14.
Biochemistry ; 58(22): 2581-2583, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31117391

RESUMEN

Steve Benner and collaborators have recently reported an analysis of DNA containing eight nucleotide letters, the four natural letters (dG, dC, dA, and dT) and four additional letters (dP, dZ, dS, and dB). Their analysis demonstrates that the additional letters do not perturb the structure or stability of the base pairs formed between the natural letters and, remarkably, that the new base pairs, dP-dZ and dS-dB, behave virtually identically to the natural base pairs. This unprecedented result convincingly demonstrates that the thermodynamic and structural behavior previously thought to be the purview of only natural DNA is in fact not unique and can be imparted to suitably designed synthetic components. In addition, the first evidence that the eight-letter DNA can be transcribed into RNA by a mutant RNA polymerase is presented, paving the way for the transfer of more information from one biopolymer to another. Along with others working to develop unnatural DNA base pairs for both in vitro and in vivo applications, this work represents an important step toward the expansion of the genetic alphabet, a central goal of synthetic biology, and has profound implications for our understanding of the molecules and forces that can make life possible.


Asunto(s)
ADN , Biología Sintética , Emparejamiento Base , ARN Polimerasas Dirigidas por ADN , Nucleótidos
15.
Methods Mol Biol ; 1973: 193-212, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31016704

RESUMEN

The polymerase chain reaction (PCR) is a universal and essential tool in molecular biology and biotechnology, but it is generally limited to the amplification of DNA with the four-letter genetic alphabet. Here, we describe PCR amplification with a six-letter alphabet that includes the two natural dA-dT and dG-dC base pairs and an unnatural base pair (UBP) formed between the synthetic nucleotides dNaM and d5SICS or dTPT3 or analogs of these synthetic nucleotides modified with linkers that allow for the site-specific labeling of the amplified DNA with different functional groups. Under standard conditions, the six-letter DNA may be amplified with high efficiency and with greater than 99.9% fidelity. This allows for the efficient production of DNA site-specifically modified with different functionalities of interest for use in a wide range of applications.


Asunto(s)
Emparejamiento Base , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/química , Reacción en Cadena de la Polimerasa/métodos , Interacciones Hidrofóbicas e Hidrofílicas
16.
Artículo en Inglés | MEDLINE | ID: mdl-30420476

RESUMEN

At sufficient concentrations, antibiotics effectively eradicate many bacterial infections. However, during therapy, bacteria are unavoidably exposed to lower antibiotic concentrations, and sub-MIC exposure can result in a wide variety of other effects, including the induction of virulence, which can complicate therapy, or horizontal gene transfer (HGT), which can accelerate the spread of resistance genes. Bacterial type I signal peptidase (SPase) is an essential protein that acts at the final step of the general secretory pathway. This pathway is required for the secretion of many proteins, including many required for virulence, and the arylomycins are a class of natural product antibiotics that target SPase. Here, we investigated the consequences of exposing Escherichia coli cultures to sub-MIC levels of an arylomycin. Using multidimensional protein identification technology mass spectrometry, we found that arylomycin treatment inhibits the proper extracytoplasmic localization of many proteins, both those that appear to be SPase substrates and several that do not. The identified proteins are involved in a broad range of extracytoplasmic processes and include a number of virulence factors. The effects of arylomycin on several processes required for virulence were then individually examined, and we found that, at even sub-MIC levels, the arylomycins potently inhibit flagellation, motility, biofilm formation, and the dissemination of antibiotic resistance via HGT. Thus, we conclude that the arylomycins represent promising novel therapeutics with the potential to eradicate infections while simultaneously reducing virulence and the dissemination of resistance.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas Bacterianas/genética , Diseño de Fármacos , Farmacorresistencia Microbiana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Virulencia
17.
J Am Chem Soc ; 140(47): 16115-16123, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30418780

RESUMEN

We have developed a family of unnatural base pairs (UBPs), exemplified by the pair formed between dNaM and dTPT3, for which pairing is mediated not by complementary hydrogen bonding but by hydrophobic and packing forces. These UBPs enabled the creation of the first semisynthetic organisms (SSOs) that store increased genetic information and use it to produce proteins containing noncanonical amino acids. However, retention of the UBPs was poor in some sequence contexts. Here, to optimize the SSO, we synthesize two novel benzothiophene-based dNaM analogs, dPTMO and dMTMO, and characterize the corresponding UBPs, dPTMO-dTPT3 and dMTMO-dTPT3. We demonstrate that these UBPs perform similarly to, or slightly worse than, dNaM-dTPT3 in vitro. However, in the in vivo environment of an SSO, retention of dMTMO-dTPT3, and especially dPTMO-dTPT3, is significantly higher than that of dNaM-dTPT3. This more optimal in vivo retention results from better replication, as opposed to more efficient import of the requisite unnatural nucleoside triphosphates. Modeling studies suggest that the more optimal replication results from specific internucleobase interactions mediated by the thiophene sulfur atoms. Finally, we show that dMTMO and dPTMO efficiently template the transcription of RNA containing TPT3 and that their improved retention in DNA results in more efficient production of proteins with noncanonical amino acids. This is the first instance of using performance within the SSO as part of the UBP evaluation and optimization process. From a general perspective, the results demonstrate the importance of evaluating synthetic biology "parts" in their in vivo context and further demonstrate the ability of hydrophobic and packing interactions to replace the complementary hydrogen bonding that underlies the replication of natural base pairs. From a more practical perspective, the identification of dMTMO-dTPT3 and especially dPTMO-dTPT3 represents significant progress toward the development of SSOs with an unrestricted ability to store and retrieve increased information.


Asunto(s)
ADN/genética , Nucleótidos/genética , Emparejamiento Base , Secuencia de Bases , ADN/química , Replicación del ADN , Escherichia coli/genética , Código Genético , Proteínas Fluorescentes Verdes/genética , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Methanosarcina barkeri/genética , Nucleótidos/síntesis química , Nucleótidos/química , Biosíntesis de Proteínas , ARN de Transferencia/genética , Biología Sintética/métodos
19.
Curr Opin Chem Biol ; 46: 196-202, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30205312

RESUMEN

Current methods to expand the genetic code enable site-specific incorporation of non-canonical amino acids (ncAAs) into proteins in eukaryotic and prokaryotic cells. However, current methods are limited by the number of codons possible, their orthogonality, and possibly their effects on protein synthesis and folding. An alternative approach relies on unnatural base pairs to create a virtually unlimited number of genuinely new codons that are efficiently translated and highly orthogonal because they direct ncAA incorporation using forces other than the complementary hydrogen bonds employed by their natural counterparts. This review outlines progress and achievements made towards developing a functional unnatural base pair and its use to generate semi-synthetic organisms with an expanded genetic alphabet that serves as the basis of an expanded genetic code.


Asunto(s)
Aminoácidos/genética , ADN/genética , Código Genético , Ingeniería Genética/métodos , Aminoácidos/química , Animales , Emparejamiento Base , ADN/química , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas
20.
ACS Med Chem Lett ; 9(4): 376-380, 2018 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-29670704

RESUMEN

ß-Lactam antibiotics, one of the most important class of human therapeutics, act via the inhibition of penicillin-binding proteins (PBPs). The unparalleled success in their development has inspired efforts to develop them as inhibitors of other targets. Bacterial type I signal peptidase is evolutionarily related to the PBPs, but the stereochemistry of its substrates and its catalytic mechanism suggest that ß-lactams with the 5S stereochemistry, as opposed to the 5R stereochemistry of the traditional ß-lactams, would be required for inhibition. We report the synthesis and evaluation of a variety of 5S penem derivatives and identify several with promising activity against both a Gram-positive and a Gram-negative bacterial pathogen. To our knowledge these are the first 5S ß-lactams to possess significant antibacterial activity and the first ß-lactams imparted with antibacterial activity via optimization of the inhibition of a target other than a PBP. Along with the privileged status of their scaffold and the promise of bacterial signal peptidase I (SPase) as a target, this activity makes these compounds promising leads for development as novel therapeutics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...